#### S.5 MATHEMATCIS PAPER ONE

## **CHAPTER ONE: DIFFERENTIATION**

#### **REVISION QUESTIONS 2020**

### Attempt all questions

1. Find the gradient function  $\frac{dy}{dx}$  for each of the following functions.

a) 
$$y = x^2 + 7x - 4$$

b) 
$$y = 6x^2 - 7x + 8$$

c) 
$$y = 3x^6 - 7x^2 + 6x - 8$$

d) 
$$y = 3x - \frac{5}{x} + \frac{6}{x^2}$$

e) 
$$(x^7+2)(4x-1)$$

2. Find the gradients of the following lines at the points indicated.

a) 
$$y=2x^3-x^2+3x-1$$
 at (-1,-6)

b) 
$$y = x^2 + 7x - 4$$
 at (2,21)

c) 
$$y = 2x^2 - x + \frac{4}{x}$$
 at (2,8)

d) 
$$y = 3x + \frac{1}{x}$$
 at (1,4)

e) 
$$y = (x+1)(2x + 3)$$
 at  $(2,21)$ 

3. If 
$$f(x) = x^3 + 4x$$
 find

b) 
$$f(x)$$

d) 
$$f''(x)$$

- e) f<sup>"</sup>(2)
- 4. If  $f(x) = 3x^2 + \frac{24}{x}$  find
  - a) f(x)
  - b) f'(-12)
- 5. Find the equation of the normal to the curve  $y=x^2 + 4x-3$  at the point where the curve cuts the y- axis. Ans: 4y + x + 12 = 0
- 6. Find the equation of the tangent to the curve  $y=x^2-3x-4$  at the point where this curve cuts the line x = 5.

  Ans: y = 7x-29
- 7. Find the equation of the tangent to the curve y = (2x-3)(x-1) at each of the points where this curve cuts the x- axis. Find the point of intersection of these tangents.

Ans: 
$$y + x = 1$$
,  $2y = 2x - 3$ ;  $(\frac{5}{4}, -\frac{1}{4})$ 

- 8. Find the equation of the normal to the curve  $y=x^2-6x+5$  at each of the points where the curve cuts the x- axis.

  Ans: 4y-x+1=0, 4y+x-5=0
- 9. Find the equation of the tangent to the curve  $y=x^2 + 5x-3$  at the points where the line y = x + 2 crosses the curve. Ans: y = 7x-4, y + 5x + 28 = 0
- 10. Find the coordinates of the point on the curve  $y=2x^2$  at which the gradient is 8 Hence find the equation of the tangent to  $y=2x^2$ whose gradient is 8. Ans: (2,8), y=8x-8
- 11. Find the coordinates of the point on the curve  $3x^2-1$  at which the gradient is 3. Ans:  $(\frac{1}{2}, \frac{1}{4})$
- 12. Find the equation of the tangent to the curve  $y = 2x^2 2x + 1$  which has a gradient of 0.5

Ans :2
$$y = x + 2$$

- 13. Find the value of k for which y = 2x + k is a tangent to the curve  $y = 2x^2 3$ . Ans  $k = -\frac{7}{2}$
- 14. Find the equation of the tangent to the curve y = (x-5)(2x + 1) which is parallel to the x-axis. Ans: 8y + 121 = 0
- 15. A curve has the equation  $y = x^3 px + q$ . The tangent to the curve at the point (2,-8) is parallel to the x-axis. Find the values of p and q. find also the coordinates of the other point where the tangent is parallel to the x-axis. Ans p=12,q=8;(-2,24)

- **16.** The function  $ax^2 + bx + c$  has a gradient function 4x + 2 and a stationary value of 1. Find the values of a, b and c. **Ans a=2, b=2 and c=** $\frac{3}{2}$
- 17. Find the second differential of y with respect to x for each of the following:

a) 
$$y = 6x^2 + 7$$

b) 
$$y = 5x^3 + 6x - 5$$

c) 
$$y = 2 + \frac{3}{x}$$

- 18. If y =  $3x^2 x$  show that  $y \frac{d^2y}{dx^2} + \frac{dy}{dx} 6y + 1 = 6x$ .
- 19. The tangent to the curve  $y = ax^2 + bx + 2$  at  $(1, \frac{1}{2})$  is parallel to the normal to the curve  $y = x^2 + 6x + 10$  at (-2, 2). Find the values of a and b. Ans: 1,-2.5
- 20. Find the coordinates of any stationary points on the given curves and distinguish between them.

a) 
$$y = 2x^2 - 8x$$

b) 
$$y = x^3 - x^2 - x + 7$$

c) 
$$y = 1 - 3x + x^3$$

d) 
$$y = (x-1)(x^2-6x + 2)$$

e) 
$$y = 18x - 20 - 3x^3$$

f) 
$$y = x^3 + 6x^2 + 12x + 12$$

q) 
$$y = x^3 - 3x^2 + 3x - 1$$

21. Find the coordinates of the stationary points on the following curves and distinguish between them. Hence sketch the curves.

a) 
$$y = x^4 + 2x^3$$

b) 
$$y = x^3 - 4x^2 + 4x$$

c) 
$$v = 5x^6 - 12x^5$$

d) 
$$y = x^4 - 4x^3 + 4x^2$$

- 22. Differentiate  $x^2 + \frac{1}{x}$  from first principles.
- 23. Differentiate  $y = \frac{x}{x^2+1}$  with respect to x from first principles
- 24. Find the derivative of  $\frac{1}{\sqrt{x}}$  from first principles
- 25. Find the equation of the normal to the curve  $y = x^2 + 5x + 3$  that is parallel to the line

$$y = 9x$$
.

- 26. Differentiate P =  $x x^2 + \frac{\pi}{2x}$  with respect to x where  $\pi$  is a constant
- 27. Find the equation of a tangent to the curve  $y=2-4^{x^2}+^{x^3}$  at a point (1,-1)
- 28. Find the stationary points of the curve  $y = 5+24x-9x^2-2x^3$  and distinguish the nature of these stationary points.
- 29. P and Q are neighboring points on the curve  $y = 2(x-x^2)$ . P is the point (x,y) and Q the point  $(x + \delta x, y + \delta y)$ . Find the value of the ratio  $\frac{\delta y}{\delta x}$  and determine the gradient of the curve at point P.
- 30. Differentiate the following using the first principles.

a) 
$$y = x^3 + x^2$$

b) 
$$y = \frac{1}{x^2}$$

c) 
$$y = \frac{1}{2x^2}$$

- 31. P is the point (x,y) and Q the point (x +  $\delta x$ ,y +  $\delta y$ ). On the graph of y =  $\sqrt{x}$ . Show that  $\frac{\delta y}{\delta x} = \frac{1}{\sqrt{(x+\delta x)^2 + \sqrt{x}}}$ . And hence find the gradient of the curve at the point P.
- 32. Find the slope of the curve  $y = ax^2 + bx + c$ , where a,b and c are constants at the point whose x coordinate is x. At what point is the tangent to the curve parallel to the x- axis?

- 33. Find the gradient of the curve  $y = 9x x^3$  at the point where x = 1. Find the equation of the tangent to the curve at this point. Where does this tangent meet the line y = x?
- 34. Find the equation of the tangent at the point (2,4) to the curve  $y = x^3 2x$ . Also find the coordinates of the point where the tangent meets the curve again.
- 35. Find the equation of the tangent to the curve  $y = x^3 9x^2 + 20x 8$  at the point (1,4). At what points of the curve is the tangent parallel to the line 4x + y 3 = 0?
- 36. Find the equation of the tangent to the curve  $y = x^3 + \frac{1}{2}x^2 + 1$  at the point  $(-1, \frac{1}{2})$ . Find the coordinates of another point on the curve where the tangent is parallel to that at the point  $(-1, \frac{1}{2})$ .
- 37. Find the points of intersection with the x-axis of the curve  $y = x^3 3x^2 + 2x$ , and find the equation of the tangent to the curve at each of these points.
- 38. Find the equations of the normals to the parabola  $4y=x^2$  at the points (-2,1) and (-4,4). Show that the point of intersection of these two points lies on the parabola.
- 39. Find the equation of the tangent at the point (1,-1) to the curve  $y = 2-4x^2 + x^3$ . What are the coordinates of the point where the tangent meets the curve again? Find the equation of the tangent at this point.
- 40. Find the coordinates of the point P on the curve  $8y=4-x^2$  at which the gradient is  $\frac{1}{2}$ . Write down the equation of the tangent to the curve at P. find also the equation of the tangent to the curve whose gradient is  $-\frac{1}{2}$ , and the coordinates of its point of intersection with the tangent at P.
- 41. Find the equations of the tangents to the curve  $y = x^3 6x^2 + 12x + 2$  which are parallel to the line y = 3x.
- 42. Find the coordinates of the points of intersection of the line x-3y = 0 with the curve  $y = x(1-x^2)$ . If these points are in order P,O,Q, prove that the tangents to the curve at P and Q are parallel, and that the tangent at O is perpendicular to them.
- 43. Find the equations of the tangent and the normal to the parabola  $x^2$  = 4y at the point (6,9). Also find the distance between the points where the tangent and the normal meet the y-axis.
- 44. The curve y = (x-2)(x-4)(x-3) cuts the x-axis at the points P(2,0), Q(3,0), R(4,0). Prove that the tangents at P and R are parallel. At what point does the normal to the curve at Q cut the y-axis?

- 45. Find the equation of the tangent at the point P(3,9) to the curve  $y = x^3 6x^2 + 15x 9$ If O is the origin and N is the foot of the perpendicular from P to the x-axis, prove that the tangent at P passes through the mid-point of ON. Find the coordinates of another point on the curve, the tangent at which is parallel to the tangent at the point (3,9).
- 46. A tangent to the parabola  $x^2 = 16y$  is perpendicular to the line x-2y-3 = 0. Find the equation of this tangent and the coordinates of its point of contact.
- 47. Find the equation of the tangent to  $y = x^2$  at the point (1,1) and of the tangent to  $y = \frac{1}{6}x^3$  at the point  $(2,\frac{4}{3})$ . Show that these tangents are parallel, and find the distance between them.
- 48. The curve C is defined by  $y = ax^2 + b$ , where a and b are constants. Given that the gradient of the curve at the point (2,-2) is 3, find the values of a and b.
- 49. Given that the curve with equation  $y = Ax^2 + Bx$  has gradient 7 at the point (6,8), find the values of the constants A and B.
- 50. A curve with equation  $y = A\sqrt{x} + \frac{B}{\sqrt{x}}$ , for constants A and B, passes through the point (1,6) with gradient -1. Find A and B.
- 51. Find the equation of the tangent, t, to the curve  $y = x^2 + 5x + 2$ , which is perpendicular to the line, I, with equation 3y + x = 5.

# **END**